Performance ROC curves (pROC)
perf_pROC.Rd
Performance ROC curves (pROC)
Usage
perf_pROC(
response,
predictor,
quiet = FALSE,
coords_ret = c("tp", "fp", "tpr", "fpr", "threshold"),
...
)
Arguments
- response
A vector containing the true class labels. Care that it is VERY important which class is the positive class because the predictions are ordered according to
restriction
- predictor
A vector containing the predictions.
- quiet
Parameter of pROC::roc
- coords_ret
Coordinates from
pROC::coords()
which should be returned in the "perf"-listelement- ...
Further parameters to pROC::roc
Value
List of
perf: Result of perf_pROC()
, comes from pROC::coords()
auc: Area under the ROC curve, comes from pROC::auc()
positive_label: Label of the positive class
Examples
data(aSAH, package = "pROC")
restrictedROC:::perf_pROC(
response = aSAH$outcome,
predictor = aSAH$ndka
)
#> Setting levels: control = Good, case = Poor
#> Setting direction: controls < cases
#> $perf
#> # A tibble: 110 × 5
#> tp fp tpr fpr threshold
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 41 72 1 1 -Inf
#> 2 41 71 1 0.986 3.44
#> 3 40 71 0.976 0.986 4.24
#> 4 40 70 0.976 0.972 4.82
#> 5 40 69 0.976 0.958 5.11
#> 6 39 69 0.951 0.958 5.18
#> 7 38 69 0.927 0.958 5.28
#> 8 37 69 0.902 0.958 5.68
#> 9 37 68 0.902 0.944 6.00
#> 10 37 67 0.902 0.931 6.15
#> # ℹ 100 more rows
#>
#> $auc
#> [1] 0.611958
#>
#> $positive_label
#> [1] "Poor"
#>
restrictedROC:::perf_pROC(
response = aSAH$outcome,
predictor = aSAH$ndka,
levels = c("Poor", "Good"), # response-values for NEGATIVE and POSITIVE
direction = "<" # predictions of positives are higher than negatives
)
#> $perf
#> # A tibble: 110 × 5
#> tp fp tpr fpr threshold
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 72 41 1 1 -Inf
#> 2 71 41 0.986 1 3.44
#> 3 71 40 0.986 0.976 4.24
#> 4 70 40 0.972 0.976 4.82
#> 5 69 40 0.958 0.976 5.11
#> 6 69 39 0.958 0.951 5.18
#> 7 69 38 0.958 0.927 5.28
#> 8 69 37 0.958 0.902 5.68
#> 9 68 37 0.944 0.902 6.00
#> 10 67 37 0.931 0.902 6.15
#> # ℹ 100 more rows
#>
#> $auc
#> [1] 0.388042
#>
#> $positive_label
#> [1] "Good"
#>
restrictedROC:::perf_pROC(
response = aSAH$outcome,
predictor = aSAH$ndka,
levels = c("Poor", "Good"), # response-values for NEGATIVE and POSITIVE
direction = ">" # predictions of positives are higher than negatives
)
#> $perf
#> # A tibble: 110 × 5
#> tp fp tpr fpr threshold
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 72 41 1 1 Inf
#> 2 72 40 1 0.976 250.
#> 3 71 40 0.986 0.976 76.4
#> 4 71 39 0.986 0.951 65.7
#> 5 70 39 0.972 0.951 56.8
#> 6 70 38 0.972 0.927 52.4
#> 7 69 38 0.958 0.927 48.8
#> 8 69 37 0.958 0.902 47.2
#> 9 68 37 0.944 0.902 44.1
#> 10 67 37 0.931 0.902 40.9
#> # ℹ 100 more rows
#>
#> $auc
#> [1] 0.611958
#>
#> $positive_label
#> [1] "Good"
#>
restrictedROC:::perf_pROC(
response = aSAH$outcome,
predictor = aSAH$ndka,
levels = c("Good", "Poor"), # response-values for NEGATIVE and POSITIVE
direction = "<" # predictions of positives are higher than negatives
)
#> $perf
#> # A tibble: 110 × 5
#> tp fp tpr fpr threshold
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 41 72 1 1 -Inf
#> 2 41 71 1 0.986 3.44
#> 3 40 71 0.976 0.986 4.24
#> 4 40 70 0.976 0.972 4.82
#> 5 40 69 0.976 0.958 5.11
#> 6 39 69 0.951 0.958 5.18
#> 7 38 69 0.927 0.958 5.28
#> 8 37 69 0.902 0.958 5.68
#> 9 37 68 0.902 0.944 6.00
#> 10 37 67 0.902 0.931 6.15
#> # ℹ 100 more rows
#>
#> $auc
#> [1] 0.611958
#>
#> $positive_label
#> [1] "Poor"
#>