n_samples <- 100
n_features <- 1
random_df <- data.frame(
"response" = sample(c(0, 1), size = n_samples, replace = TRUE),
as.data.frame(matrix(rnorm(n_samples * n_features), nrow = n_samples, ncol = n_features))
)
dependent_vars <- "response"
independent_vars <- colnames(random_df)[colnames(random_df) != "response"]
reslist <- list()
for (dv in dependent_vars) {
reslist[[dv]] <- list()
for (iv in independent_vars) {
cat(date(), " ", dv, iv, "\n")
df <- tibble::tibble(
"response" = random_df[[dv]],
"predictor" = random_df[[iv]]
)
per_resp_list <- split(df$predictor, df$response)
}
}
#> Thu Jan 30 20:31:08 2025 response V1
# pdf(file.path("res", "rzAUC_colors.pdf"))
print(
plot_density_rROC_empirical(
rev(per_resp_list),
xmin = min(df$predictor),
xmax = max(df$predictor),
positive_label = 1,
direction = "<"
)
)
#> $plots

#>
#> $single_rROC
#> $performances
#> # A tibble: 101 × 21
#> threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -Inf 0.487 49 51 1 0.00337
#> 2 -2.44 0.477 49 50 1.02 0.00340
#> 3 -2.02 0.466 49 49 1.04 0.00344
#> 4 -1.73 0.455 49 48 1.06 0.00347
#> 5 -1.69 0.464 48 48 1.08 0.00351
#> 6 -1.60 0.474 47 48 1.11 0.00355
#> 7 -1.49 0.463 47 47 1.13 0.00358
#> 8 -1.44 0.451 47 46 1.16 0.00362
#> 9 -1.35 0.439 47 45 1.18 0.00366
#> 10 -1.24 0.426 47 44 1.21 0.00371
#> # ℹ 91 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> # pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> # negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> # rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> # tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#>
#> $global
#> auc auc_var_H0 rzAUC pval_asym
#> 1 0.4869948 0.4869948 -0.224094 0.8226842
#>
#> $keep_highs
#> auc auc_var_H0 rzAUC pval_asym threshold
#> 1 0.2883598 0.008818342 -2.253745 0.02421223 0.4416718
#>
#> $keep_lows
#> auc auc_var_H0 rzAUC pval_asym threshold
#> 1 0.7818182 0.01363636 2.413347 0.01580677 -0.4145065
#>
#> $max_total
#> auc auc_var_H0 rzAUC pval_asym threshold part
#> 1 0.7818182 0.01363636 2.413347 0.01580677 -0.4145065 low
#>
#> $positive_label
#> [1] 1
#>
#> $pROC_full
#>
#> Call:
#> roc.default(response = true_pred_df[["true"]], predictor = true_pred_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: true_pred_df[["pred"]] in 51 controls (true_pred_df[["true"]] FALSE) < 49 cases (true_pred_df[["true"]] TRUE).
#> Area under the curve: 0.487
#>
#> attr(,"class")
#> [1] "restrictedROC" "list"
print(
plot_density_rROC_empirical(
rev(per_resp_list),
xmin = min(df$predictor),
xmax = max(df$predictor),
positive_label = 1,
direction = "<",
part_colors = c(high = "#d95f02", low = "#00BFC4")
)
)
#> $plots

#>
#> $single_rROC
#> $performances
#> # A tibble: 101 × 21
#> threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -Inf 0.487 49 51 1 0.00337
#> 2 -2.44 0.477 49 50 1.02 0.00340
#> 3 -2.02 0.466 49 49 1.04 0.00344
#> 4 -1.73 0.455 49 48 1.06 0.00347
#> 5 -1.69 0.464 48 48 1.08 0.00351
#> 6 -1.60 0.474 47 48 1.11 0.00355
#> 7 -1.49 0.463 47 47 1.13 0.00358
#> 8 -1.44 0.451 47 46 1.16 0.00362
#> 9 -1.35 0.439 47 45 1.18 0.00366
#> 10 -1.24 0.426 47 44 1.21 0.00371
#> # ℹ 91 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> # pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> # negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> # rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> # tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#>
#> $global
#> auc auc_var_H0 rzAUC pval_asym
#> 1 0.4869948 0.4869948 -0.224094 0.8226842
#>
#> $keep_highs
#> auc auc_var_H0 rzAUC pval_asym threshold
#> 1 0.2883598 0.008818342 -2.253745 0.02421223 0.4416718
#>
#> $keep_lows
#> auc auc_var_H0 rzAUC pval_asym threshold
#> 1 0.7818182 0.01363636 2.413347 0.01580677 -0.4145065
#>
#> $max_total
#> auc auc_var_H0 rzAUC pval_asym threshold part
#> 1 0.7818182 0.01363636 2.413347 0.01580677 -0.4145065 low
#>
#> $positive_label
#> [1] 1
#>
#> $pROC_full
#>
#> Call:
#> roc.default(response = true_pred_df[["true"]], predictor = true_pred_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: true_pred_df[["pred"]] in 51 controls (true_pred_df[["true"]] FALSE) < 49 cases (true_pred_df[["true"]] TRUE).
#> Area under the curve: 0.487
#>
#> attr(,"class")
#> [1] "restrictedROC" "list"
print(
plot_density_rROC_empirical(
rev(per_resp_list),
xmin = min(df$predictor),
xmax = max(df$predictor),
positive_label = 1,
direction = "<",
part_colors = c(high = "yellow", low = "brown")
)
)
#> $plots

#>
#> $single_rROC
#> $performances
#> # A tibble: 101 × 21
#> threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -Inf 0.487 49 51 1 0.00337
#> 2 -2.44 0.477 49 50 1.02 0.00340
#> 3 -2.02 0.466 49 49 1.04 0.00344
#> 4 -1.73 0.455 49 48 1.06 0.00347
#> 5 -1.69 0.464 48 48 1.08 0.00351
#> 6 -1.60 0.474 47 48 1.11 0.00355
#> 7 -1.49 0.463 47 47 1.13 0.00358
#> 8 -1.44 0.451 47 46 1.16 0.00362
#> 9 -1.35 0.439 47 45 1.18 0.00366
#> 10 -1.24 0.426 47 44 1.21 0.00371
#> # ℹ 91 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> # pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> # negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> # rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> # tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#>
#> $global
#> auc auc_var_H0 rzAUC pval_asym
#> 1 0.4869948 0.4869948 -0.224094 0.8226842
#>
#> $keep_highs
#> auc auc_var_H0 rzAUC pval_asym threshold
#> 1 0.2883598 0.008818342 -2.253745 0.02421223 0.4416718
#>
#> $keep_lows
#> auc auc_var_H0 rzAUC pval_asym threshold
#> 1 0.7818182 0.01363636 2.413347 0.01580677 -0.4145065
#>
#> $max_total
#> auc auc_var_H0 rzAUC pval_asym threshold part
#> 1 0.7818182 0.01363636 2.413347 0.01580677 -0.4145065 low
#>
#> $positive_label
#> [1] 1
#>
#> $pROC_full
#>
#> Call:
#> roc.default(response = true_pred_df[["true"]], predictor = true_pred_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: true_pred_df[["pred"]] in 51 controls (true_pred_df[["true"]] FALSE) < 49 cases (true_pred_df[["true"]] TRUE).
#> Area under the curve: 0.487
#>
#> attr(,"class")
#> [1] "restrictedROC" "list"
# dev.off()