Skip to contents

A, Top-left:        Given positive and negative distributions, plot the corresponding densities.
B, Top-right:       Corresponding ROC curve
C, Bottom-left:     False positive rate VS threshold
D, Bottom-right:    rzAUC plot for markerHIGH and markerLOW restricted parts, the rzAUC is shown

Usage

plot_density_rROC_empirical(
  values_grouped,
  length.out = 500,
  xmin = NA,
  xmax = NA,
  single_rROC = NULL,
  positive_label = NULL,
  direction = "<",
  part_colors = default_part_colors,
  plot_thresholds = TRUE,
  plot_thresholds_fpr = TRUE,
  plot_n_points = NA
)

Arguments

values_grouped

List-like element. (also data.frames or matrices) where the elements are the samples from the different distributions. E.g.: # A tibble: 1,000 × 2 dist_1 dist_2 1 0.974 0.257 2 0.196 -0.780 3 -0.125 -0.264 4 0.701 0.260

length.out

See plot_density_empirical(). Granularity of density plot (pure visualization).

xmin

See plot_density_empirical().

xmax

See plot_density_empirical().

single_rROC

Optional, if not given, rROC will be calculated on the fly.

positive_label

Positive label for calculating ROC curve and the densities. If NULL, will be automatically generated from the data.

direction

See pROC::roc(), but only "<" implemented.

part_colors

Default: default_part_colors A vector c("high"=COLOR_A, "low"=COLOR_B) with colors for high-value (markerHIGH) and low-value (markerLOW) parts of calculating the restricted ROC.

plot_thresholds

Plot the optimal restrictions for high/low part and the max_total (best overall)

plot_thresholds_fpr

Plot the max_total threshold on plots B, C and D

plot_n_points

Plot n random actual data points from each distribution with geom_jitter_scaling(). If NA, no points are plotted. To plot all points use Inf.

Value

patchwork'ed ggplots, see Description for their meaning.

Details

For further description see our publication on restricted ROC curves.

Examples


sim_samples <- sim(
    list(
        "dist_1" = function(x) rnorm(x, mean = 1, sd = 1),
        "dist_2" = function(x) rnorm(x, mean = 0, sd = 1)
    ),
    do_melt = FALSE,
    length.out = 50
)
plot_density_rROC_empirical(sim_samples)
#> Positive label not given, setting to max(response): dist_2
#> $plots

#> 
#> $single_rROC
#> $performances
#> # A tibble: 101 × 21
#>    threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#>        <dbl>    <dbl>          <dbl>          <dbl>        <dbl>           <dbl>
#>  1   -Inf       0.321             50             50         1            0.00337
#>  2     -2.35    0.328             49             50         1.02         0.00340
#>  3     -2.05    0.335             48             50         1.04         0.00344
#>  4     -1.61    0.342             47             50         1.06         0.00348
#>  5     -1.34    0.349             46             50         1.09         0.00351
#>  6     -1.31    0.357             45             50         1.11         0.00356
#>  7     -1.21    0.365             44             50         1.14         0.00360
#>  8     -1.12    0.373             43             50         1.16         0.00364
#>  9     -1.07    0.382             42             50         1.19         0.00369
#> 10     -1.05    0.392             41             50         1.22         0.00374
#> # ℹ 91 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> #   pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> #   negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> #   rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> #   tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#> 
#> $global
#>      auc auc_var_H0     rzAUC   pval_asym
#> 1 0.3212     0.3212 -3.081537 0.002059345
#> 
#> $keep_highs
#>      auc  auc_var_H0     rzAUC   pval_asym threshold
#> 1 0.3212 0.003366667 -3.081537 0.002059345      -Inf
#> 
#> $keep_lows
#>      auc  auc_var_H0     rzAUC   pval_asym threshold
#> 1 0.3212 0.003366667 -3.081537 0.002059345       Inf
#> 
#> $max_total
#>      auc  auc_var_H0     rzAUC   pval_asym threshold   part
#> 1 0.3212 0.003366667 -3.081537 0.002059345      -Inf global
#> 
#> $positive_label
#> [1] "dist_2"
#> 
#> $pROC_full
#> 
#> Call:
#> roc.default(response = true_pred_df[["true"]], predictor = true_pred_df[["pred"]],     levels = c(FALSE, TRUE), direction = direction)
#> 
#> Data: true_pred_df[["pred"]] in 50 controls (true_pred_df[["true"]] FALSE) < 50 cases (true_pred_df[["true"]] TRUE).
#> Area under the curve: 0.3212
#> 
#> attr(,"class")
#> [1] "restrictedROC" "list"         
#> 
plot_density_rROC_empirical(sim_samples, positive_label = "dist_1")
#> $plots

#> 
#> $single_rROC
#> $performances
#> # A tibble: 101 × 21
#>    threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#>        <dbl>    <dbl>          <dbl>          <dbl>        <dbl>           <dbl>
#>  1   -Inf       0.679             50             50         1            0.00337
#>  2     -2.35    0.672             50             49         1.02         0.00340
#>  3     -2.05    0.665             50             48         1.04         0.00344
#>  4     -1.61    0.658             50             47         1.06         0.00348
#>  5     -1.34    0.651             50             46         1.09         0.00351
#>  6     -1.31    0.643             50             45         1.11         0.00356
#>  7     -1.21    0.635             50             44         1.14         0.00360
#>  8     -1.12    0.627             50             43         1.16         0.00364
#>  9     -1.07    0.618             50             42         1.19         0.00369
#> 10     -1.05    0.608             50             41         1.22         0.00374
#> # ℹ 91 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> #   pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> #   negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> #   rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> #   tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#> 
#> $global
#>      auc auc_var_H0    rzAUC   pval_asym
#> 1 0.6788     0.6788 3.081537 0.002059345
#> 
#> $keep_highs
#>      auc  auc_var_H0    rzAUC   pval_asym threshold
#> 1 0.6788 0.003366667 3.081537 0.002059345      -Inf
#> 
#> $keep_lows
#>      auc  auc_var_H0    rzAUC   pval_asym threshold
#> 1 0.6788 0.003366667 3.081537 0.002059345       Inf
#> 
#> $max_total
#>      auc  auc_var_H0    rzAUC   pval_asym threshold   part
#> 1 0.6788 0.003366667 3.081537 0.002059345      -Inf global
#> 
#> $positive_label
#> [1] "dist_1"
#> 
#> $pROC_full
#> 
#> Call:
#> roc.default(response = true_pred_df[["true"]], predictor = true_pred_df[["pred"]],     levels = c(FALSE, TRUE), direction = direction)
#> 
#> Data: true_pred_df[["pred"]] in 50 controls (true_pred_df[["true"]] FALSE) < 50 cases (true_pred_df[["true"]] TRUE).
#> Area under the curve: 0.6788
#> 
#> attr(,"class")
#> [1] "restrictedROC" "list"         
#> 
plot_density_rROC_empirical(sim_samples, positive_label = "dist_2")
#> $plots

#> 
#> $single_rROC
#> $performances
#> # A tibble: 101 × 21
#>    threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#>        <dbl>    <dbl>          <dbl>          <dbl>        <dbl>           <dbl>
#>  1   -Inf       0.321             50             50         1            0.00337
#>  2     -2.35    0.328             49             50         1.02         0.00340
#>  3     -2.05    0.335             48             50         1.04         0.00344
#>  4     -1.61    0.342             47             50         1.06         0.00348
#>  5     -1.34    0.349             46             50         1.09         0.00351
#>  6     -1.31    0.357             45             50         1.11         0.00356
#>  7     -1.21    0.365             44             50         1.14         0.00360
#>  8     -1.12    0.373             43             50         1.16         0.00364
#>  9     -1.07    0.382             42             50         1.19         0.00369
#> 10     -1.05    0.392             41             50         1.22         0.00374
#> # ℹ 91 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> #   pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> #   negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> #   rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> #   tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#> 
#> $global
#>      auc auc_var_H0     rzAUC   pval_asym
#> 1 0.3212     0.3212 -3.081537 0.002059345
#> 
#> $keep_highs
#>      auc  auc_var_H0     rzAUC   pval_asym threshold
#> 1 0.3212 0.003366667 -3.081537 0.002059345      -Inf
#> 
#> $keep_lows
#>      auc  auc_var_H0     rzAUC   pval_asym threshold
#> 1 0.3212 0.003366667 -3.081537 0.002059345       Inf
#> 
#> $max_total
#>      auc  auc_var_H0     rzAUC   pval_asym threshold   part
#> 1 0.3212 0.003366667 -3.081537 0.002059345      -Inf global
#> 
#> $positive_label
#> [1] "dist_2"
#> 
#> $pROC_full
#> 
#> Call:
#> roc.default(response = true_pred_df[["true"]], predictor = true_pred_df[["pred"]],     levels = c(FALSE, TRUE), direction = direction)
#> 
#> Data: true_pred_df[["pred"]] in 50 controls (true_pred_df[["true"]] FALSE) < 50 cases (true_pred_df[["true"]] TRUE).
#> Area under the curve: 0.3212
#> 
#> attr(,"class")
#> [1] "restrictedROC" "list"         
#> 
plot_density_rROC_empirical(sim_samples, part_colors = c("high" = "green", "low" = "yellow"))
#> Positive label not given, setting to max(response): dist_2
#> $plots

#> 
#> $single_rROC
#> $performances
#> # A tibble: 101 × 21
#>    threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#>        <dbl>    <dbl>          <dbl>          <dbl>        <dbl>           <dbl>
#>  1   -Inf       0.321             50             50         1            0.00337
#>  2     -2.35    0.328             49             50         1.02         0.00340
#>  3     -2.05    0.335             48             50         1.04         0.00344
#>  4     -1.61    0.342             47             50         1.06         0.00348
#>  5     -1.34    0.349             46             50         1.09         0.00351
#>  6     -1.31    0.357             45             50         1.11         0.00356
#>  7     -1.21    0.365             44             50         1.14         0.00360
#>  8     -1.12    0.373             43             50         1.16         0.00364
#>  9     -1.07    0.382             42             50         1.19         0.00369
#> 10     -1.05    0.392             41             50         1.22         0.00374
#> # ℹ 91 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> #   pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> #   negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> #   rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> #   tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#> 
#> $global
#>      auc auc_var_H0     rzAUC   pval_asym
#> 1 0.3212     0.3212 -3.081537 0.002059345
#> 
#> $keep_highs
#>      auc  auc_var_H0     rzAUC   pval_asym threshold
#> 1 0.3212 0.003366667 -3.081537 0.002059345      -Inf
#> 
#> $keep_lows
#>      auc  auc_var_H0     rzAUC   pval_asym threshold
#> 1 0.3212 0.003366667 -3.081537 0.002059345       Inf
#> 
#> $max_total
#>      auc  auc_var_H0     rzAUC   pval_asym threshold   part
#> 1 0.3212 0.003366667 -3.081537 0.002059345      -Inf global
#> 
#> $positive_label
#> [1] "dist_2"
#> 
#> $pROC_full
#> 
#> Call:
#> roc.default(response = true_pred_df[["true"]], predictor = true_pred_df[["pred"]],     levels = c(FALSE, TRUE), direction = direction)
#> 
#> Data: true_pred_df[["pred"]] in 50 controls (true_pred_df[["true"]] FALSE) < 50 cases (true_pred_df[["true"]] TRUE).
#> Area under the curve: 0.3212
#> 
#> attr(,"class")
#> [1] "restrictedROC" "list"         
#> 
plot_density_rROC_empirical(sim_samples, plot_thresholds = FALSE)
#> Positive label not given, setting to max(response): dist_2
#> $plots

#> 
#> $single_rROC
#> $performances
#> # A tibble: 101 × 21
#>    threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#>        <dbl>    <dbl>          <dbl>          <dbl>        <dbl>           <dbl>
#>  1   -Inf       0.321             50             50         1            0.00337
#>  2     -2.35    0.328             49             50         1.02         0.00340
#>  3     -2.05    0.335             48             50         1.04         0.00344
#>  4     -1.61    0.342             47             50         1.06         0.00348
#>  5     -1.34    0.349             46             50         1.09         0.00351
#>  6     -1.31    0.357             45             50         1.11         0.00356
#>  7     -1.21    0.365             44             50         1.14         0.00360
#>  8     -1.12    0.373             43             50         1.16         0.00364
#>  9     -1.07    0.382             42             50         1.19         0.00369
#> 10     -1.05    0.392             41             50         1.22         0.00374
#> # ℹ 91 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> #   pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> #   negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> #   rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> #   tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#> 
#> $global
#>      auc auc_var_H0     rzAUC   pval_asym
#> 1 0.3212     0.3212 -3.081537 0.002059345
#> 
#> $keep_highs
#>      auc  auc_var_H0     rzAUC   pval_asym threshold
#> 1 0.3212 0.003366667 -3.081537 0.002059345      -Inf
#> 
#> $keep_lows
#>      auc  auc_var_H0     rzAUC   pval_asym threshold
#> 1 0.3212 0.003366667 -3.081537 0.002059345       Inf
#> 
#> $max_total
#>      auc  auc_var_H0     rzAUC   pval_asym threshold   part
#> 1 0.3212 0.003366667 -3.081537 0.002059345      -Inf global
#> 
#> $positive_label
#> [1] "dist_2"
#> 
#> $pROC_full
#> 
#> Call:
#> roc.default(response = true_pred_df[["true"]], predictor = true_pred_df[["pred"]],     levels = c(FALSE, TRUE), direction = direction)
#> 
#> Data: true_pred_df[["pred"]] in 50 controls (true_pred_df[["true"]] FALSE) < 50 cases (true_pred_df[["true"]] TRUE).
#> Area under the curve: 0.3212
#> 
#> attr(,"class")
#> [1] "restrictedROC" "list"         
#> 
plot_density_rROC_empirical(sim_samples, plot_thresholds_fpr = FALSE)
#> Positive label not given, setting to max(response): dist_2
#> $plots

#> 
#> $single_rROC
#> $performances
#> # A tibble: 101 × 21
#>    threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#>        <dbl>    <dbl>          <dbl>          <dbl>        <dbl>           <dbl>
#>  1   -Inf       0.321             50             50         1            0.00337
#>  2     -2.35    0.328             49             50         1.02         0.00340
#>  3     -2.05    0.335             48             50         1.04         0.00344
#>  4     -1.61    0.342             47             50         1.06         0.00348
#>  5     -1.34    0.349             46             50         1.09         0.00351
#>  6     -1.31    0.357             45             50         1.11         0.00356
#>  7     -1.21    0.365             44             50         1.14         0.00360
#>  8     -1.12    0.373             43             50         1.16         0.00364
#>  9     -1.07    0.382             42             50         1.19         0.00369
#> 10     -1.05    0.392             41             50         1.22         0.00374
#> # ℹ 91 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> #   pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> #   negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> #   rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> #   tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#> 
#> $global
#>      auc auc_var_H0     rzAUC   pval_asym
#> 1 0.3212     0.3212 -3.081537 0.002059345
#> 
#> $keep_highs
#>      auc  auc_var_H0     rzAUC   pval_asym threshold
#> 1 0.3212 0.003366667 -3.081537 0.002059345      -Inf
#> 
#> $keep_lows
#>      auc  auc_var_H0     rzAUC   pval_asym threshold
#> 1 0.3212 0.003366667 -3.081537 0.002059345       Inf
#> 
#> $max_total
#>      auc  auc_var_H0     rzAUC   pval_asym threshold   part
#> 1 0.3212 0.003366667 -3.081537 0.002059345      -Inf global
#> 
#> $positive_label
#> [1] "dist_2"
#> 
#> $pROC_full
#> 
#> Call:
#> roc.default(response = true_pred_df[["true"]], predictor = true_pred_df[["pred"]],     levels = c(FALSE, TRUE), direction = direction)
#> 
#> Data: true_pred_df[["pred"]] in 50 controls (true_pred_df[["true"]] FALSE) < 50 cases (true_pred_df[["true"]] TRUE).
#> Area under the curve: 0.3212
#> 
#> attr(,"class")
#> [1] "restrictedROC" "list"         
#> 



tmp <- simple_rROC(
    response = melt_gendata(sim_samples)[["Distribution"]],
    predictor = melt_gendata(sim_samples)[["Value"]],
    direction = "<",
    positive_label = "dist_1",
    return_proc = TRUE
)
single_rROC <- simple_rROC_interpret(tmp)
plot_density_rROC_empirical(sim_samples, single_rROC = single_rROC)
#> $plots

#> 
#> $single_rROC
#> $performances
#> # A tibble: 101 × 21
#>    threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#>        <dbl>    <dbl>          <dbl>          <dbl>        <dbl>           <dbl>
#>  1   -Inf       0.679             50             50         1            0.00337
#>  2     -2.35    0.672             50             49         1.02         0.00340
#>  3     -2.05    0.665             50             48         1.04         0.00344
#>  4     -1.61    0.658             50             47         1.06         0.00348
#>  5     -1.34    0.651             50             46         1.09         0.00351
#>  6     -1.31    0.643             50             45         1.11         0.00356
#>  7     -1.21    0.635             50             44         1.14         0.00360
#>  8     -1.12    0.627             50             43         1.16         0.00364
#>  9     -1.07    0.618             50             42         1.19         0.00369
#> 10     -1.05    0.608             50             41         1.22         0.00374
#> # ℹ 91 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> #   pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> #   negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> #   rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> #   tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#> 
#> $global
#>      auc auc_var_H0    rzAUC   pval_asym
#> 1 0.6788     0.6788 3.081537 0.002059345
#> 
#> $keep_highs
#>      auc  auc_var_H0    rzAUC   pval_asym threshold
#> 1 0.6788 0.003366667 3.081537 0.002059345      -Inf
#> 
#> $keep_lows
#>      auc  auc_var_H0    rzAUC   pval_asym threshold
#> 1 0.6788 0.003366667 3.081537 0.002059345       Inf
#> 
#> $max_total
#>      auc  auc_var_H0    rzAUC   pval_asym threshold   part
#> 1 0.6788 0.003366667 3.081537 0.002059345      -Inf global
#> 
#> $positive_label
#> [1] "dist_1"
#> 
#> $pROC_full
#> 
#> Call:
#> roc.default(response = true_pred_df[["true"]], predictor = true_pred_df[["pred"]],     levels = c(FALSE, TRUE), direction = direction)
#> 
#> Data: true_pred_df[["pred"]] in 50 controls (true_pred_df[["true"]] FALSE) < 50 cases (true_pred_df[["true"]] TRUE).
#> Area under the curve: 0.6788
#> 
#> attr(,"class")
#> [1] "restrictedROC" "list"         
#>