restricted ROC
simple_rROC.Rd
Calculate the restricted ROC curves.
Usage
simple_rROC(
response,
predictor,
direction = "<",
positive_label = NULL,
get_all_aucs_fun = get_all_aucs_norecalculation,
return_proc = FALSE,
do_parallel = FALSE,
check_positive_negative_count = FALSE
)
Arguments
- response
A vector containing the true class labels. Care that it is VERY important which class is the positive class because the predictions are ordered according to
restriction
- predictor
A vector containing the predictions.
- direction
See
pROC::roc()
, but only "<" is implemented right now. Maybe changing the positive_label already solves your problem.- positive_label
Label for the positive class. All other values of
response
are regarded as negative cases.- get_all_aucs_fun
How to calculate the AUCs. You would usually now want to set that. Implemented are
get_all_aucs()
: Calculates the AUCs by actively splitting the data into markerHIGH and markerLOW parts. Then calculates a usual AUC on the parts.`get_all_aucs_norecalculation()`: Calculates the AUCs based on the scaling factor described in the publication. Much faster after the ROC curve does not have to be recalculated over and over again. Todo: Could potentially be improved by not recalculating the partial AUCs with pROC over and over but by just adding parts.
- return_proc
Should pROC::roc() be returned for the full dataset? 2) Should pROC::roc() be returned on each of the part datasets? Only works with
get_all_aucs_fun=get_all_aucs
afterget_all_aucs_norecalculation()
does not calculate the ROC curves for each restriction separately.
- do_parallel
get_all_aucs()
has parallelization enabled, but for some reason it seemed to not improve the speed of the calculation. Therefore throws an error.get_all_aucs_norecalculation()
does not use it at all.- check_positive_negative_count
Pure checking/testing parameter, you would not set that TRUE anytime. Just enables checks if the number of positives/negatives was extracted correctly for the restrictions
Value
List of two elements:
"positive_label": Label of the positive class
"joined_aucs": Table with the following columns:
threshold
The threshold which was used as restriction value.
"high"-part is always >= threshold
"low"-part is always < threshold
auc_high
restricted AUC for the high part, including the scaling factor
positives_high
How many positives are in the restricted range of high values
negatives_high
How many negatives are in the restricted range of high values
scaling_high
Scaling factor which is multiplied with the actual partial
area under the curve to obtain the "recalculated" area under
the curve if it was RE-calculated on the samples being in the
restricted range of high values
auc_var_H0_high
Estimated variance under the nullhypothesis using
\deqn{\frac{n_{positives} + n_{negatives} + 1}{12\cdot n_{positives} \cdot n_{negatives}}}
rzAUC_high
restricted standardized AUC, obtained via
\deqn{\frac{auc_high - .5}{\sqrt{auc_var_H0_high}}}
pval_asym_onesided_high
Asymptotic, onesided (is AUC bigger) p-value of the restricted standardized AUC,
obtained via:
\deqn{1 - pnorm(full_df[["rzAUC"]])}
Here the requirements are not fullfilled, use with utmost caution!
pval_asym_high
Asymptotic, twosided (is AUC different) p-value of the restricted standardized AUC,
obtained via:
\deqn{(1 - pnorm(abs(full_df[["rzAUC"]]))) * 2}
Here the requirements are not fullfilled, use with utmost caution!
auc_low
restricted AUC for the low part, including the scaling factor
positives_low
How many positives are in the restricted range of low values
negatives_low
How many negatives are in the restricted range of low values
scaling_low
Scaling factor which is multiplied with the actual partial
area under the curve to obtain the "recalculated" area under
the curve if it was RE-calculated on the samples being in the
restricted range of low values
auc_var_H0_low
Estimated variance under the nullhypothesis using
\deqn{\frac{n_{positives} + n_{negatives} + 1}{12\cdot n_{positives} \cdot n_{negatives}}}
rzAUC_low
restricted standardized AUC, obtained via
\deqn{\frac{auc_low - .5}{\sqrt{auc_var_H0_low}}}
pval_asym_onesided_low
Asymptotic, onesided (is AUC bigger) p-value of the restricted standardized AUC,
obtained via:
\deqn{1 - pnorm(full_df[["rzAUC"]])}
Here the requirements are not fullfilled, use with utmost caution!
pval_asym_low
Asymptotic, twosided (is AUC different) p-value of the restricted standardized AUC,
obtained via:
\deqn{(1 - pnorm(abs(full_df[["rzAUC"]]))) * 2}
Here the requirements are not fullfilled, use with utmost caution!
tp
Number of true positives at that threshold including all samples
fp
Number of false positives at that threshold including all samples
tpr_global
True positive rate at that threshold including all ("global") samples
fpr_global
False positive rate at that threshold including all ("global") samples
Examples
data(aSAH, package = "pROC")
simple_rROC(
response = aSAH$outcome,
predictor = aSAH$ndka
)
#> Positive label not given, setting to last level of factor: Poor
#> $joined_aucs
#> # A tibble: 110 × 21
#> threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -Inf 0.612 41 72 1 0.00322
#> 2 3.44 0.606 41 71 1.01 0.00323
#> 3 4.24 0.622 40 71 1.04 0.00329
#> 4 4.82 0.616 40 70 1.05 0.00330
#> 5 5.11 0.611 40 69 1.07 0.00332
#> 6 5.18 0.626 39 69 1.10 0.00338
#> 7 5.28 0.643 38 69 1.13 0.00343
#> 8 5.68 0.660 37 69 1.16 0.00349
#> 9 6.00 0.655 37 68 1.17 0.00351
#> 10 6.15 0.650 37 67 1.19 0.00353
#> # ℹ 100 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> # pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> # negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> # rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> # tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#>
#> $positive_label
#> [1] "Poor"
#>
#> attr(,"class")
#> [1] "simple_rROC" "list"
simple_rROC(
response = aSAH$outcome,
predictor = aSAH$ndka,
positive_label = "Poor"
)
#> $joined_aucs
#> # A tibble: 110 × 21
#> threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -Inf 0.612 41 72 1 0.00322
#> 2 3.44 0.606 41 71 1.01 0.00323
#> 3 4.24 0.622 40 71 1.04 0.00329
#> 4 4.82 0.616 40 70 1.05 0.00330
#> 5 5.11 0.611 40 69 1.07 0.00332
#> 6 5.18 0.626 39 69 1.10 0.00338
#> 7 5.28 0.643 38 69 1.13 0.00343
#> 8 5.68 0.660 37 69 1.16 0.00349
#> 9 6.00 0.655 37 68 1.17 0.00351
#> 10 6.15 0.650 37 67 1.19 0.00353
#> # ℹ 100 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> # pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> # negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> # rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> # tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#>
#> $positive_label
#> [1] "Poor"
#>
#> attr(,"class")
#> [1] "simple_rROC" "list"
simple_rROC(
response = aSAH$outcome,
predictor = aSAH$ndka,
positive_label = "Good"
)
#> $joined_aucs
#> # A tibble: 110 × 21
#> threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -Inf 0.388 72 41 1 0.00322
#> 2 3.44 0.394 71 41 1.01 0.00323
#> 3 4.24 0.378 71 40 1.04 0.00329
#> 4 4.82 0.384 70 40 1.05 0.00330
#> 5 5.11 0.389 69 40 1.07 0.00332
#> 6 5.18 0.374 69 39 1.10 0.00338
#> 7 5.28 0.357 69 38 1.13 0.00343
#> 8 5.68 0.340 69 37 1.16 0.00349
#> 9 6.00 0.345 68 37 1.17 0.00351
#> 10 6.15 0.350 67 37 1.19 0.00353
#> # ℹ 100 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> # pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> # negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> # rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> # tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#>
#> $positive_label
#> [1] "Good"
#>
#> attr(,"class")
#> [1] "simple_rROC" "list"
simple_rROC(
response = aSAH$outcome,
predictor = aSAH$ndka,
get_all_aucs_fun = restrictedROC:::get_all_aucs_norecalculation
)
#> Positive label not given, setting to last level of factor: Poor
#> $joined_aucs
#> # A tibble: 110 × 21
#> threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -Inf 0.612 41 72 1 0.00322
#> 2 3.44 0.606 41 71 1.01 0.00323
#> 3 4.24 0.622 40 71 1.04 0.00329
#> 4 4.82 0.616 40 70 1.05 0.00330
#> 5 5.11 0.611 40 69 1.07 0.00332
#> 6 5.18 0.626 39 69 1.10 0.00338
#> 7 5.28 0.643 38 69 1.13 0.00343
#> 8 5.68 0.660 37 69 1.16 0.00349
#> 9 6.00 0.655 37 68 1.17 0.00351
#> 10 6.15 0.650 37 67 1.19 0.00353
#> # ℹ 100 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> # pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> # negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> # rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> # tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#>
#> $positive_label
#> [1] "Poor"
#>
#> attr(,"class")
#> [1] "simple_rROC" "list"
simple_rROC(
response = aSAH$outcome,
predictor = aSAH$ndka,
get_all_aucs_fun = restrictedROC:::get_all_aucs
)
#> Positive label not given, setting to last level of factor: Poor
#> $joined_aucs
#> # A tibble: 110 × 19
#> threshold auc_high positives_high negatives_high auc_var_H0_high rzAUC_high
#> <dbl> <dbl> <int> <int> <dbl> <dbl>
#> 1 -Inf 0.612 41 72 0.00322 1.97
#> 2 3.44 0.606 41 71 0.00323 1.87
#> 3 4.24 0.622 40 71 0.00329 2.12
#> 4 4.82 0.616 40 70 0.00330 2.02
#> 5 5.11 0.611 40 69 0.00332 1.92
#> 6 5.18 0.626 39 69 0.00338 2.17
#> 7 5.28 0.643 38 69 0.00343 2.44
#> 8 5.68 0.660 37 69 0.00349 2.71
#> 9 6.00 0.655 37 68 0.00351 2.62
#> 10 6.15 0.650 37 67 0.00353 2.53
#> # ℹ 100 more rows
#> # ℹ 13 more variables: pval_asym_onesided_high <dbl>, pval_asym_high <dbl>,
#> # auc_low <dbl>, positives_low <int>, negatives_low <int>,
#> # auc_var_H0_low <dbl>, rzAUC_low <dbl>, pval_asym_onesided_low <dbl>,
#> # pval_asym_low <dbl>, tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#>
#> $positive_label
#> [1] "Poor"
#>
#> attr(,"class")
#> [1] "simple_rROC" "list"
simple_rROC(
response = aSAH$outcome,
predictor = aSAH$ndka,
get_all_aucs_fun = restrictedROC:::get_all_aucs,
return_proc = TRUE
)
#> Positive label not given, setting to last level of factor: Poor
#> $joined_aucs
#> # A tibble: 110 × 19
#> threshold auc_high positives_high negatives_high auc_var_H0_high rzAUC_high
#> <dbl> <dbl> <int> <int> <dbl> <dbl>
#> 1 -Inf 0.612 41 72 0.00322 1.97
#> 2 3.44 0.606 41 71 0.00323 1.87
#> 3 4.24 0.622 40 71 0.00329 2.12
#> 4 4.82 0.616 40 70 0.00330 2.02
#> 5 5.11 0.611 40 69 0.00332 1.92
#> 6 5.18 0.626 39 69 0.00338 2.17
#> 7 5.28 0.643 38 69 0.00343 2.44
#> 8 5.68 0.660 37 69 0.00349 2.71
#> 9 6.00 0.655 37 68 0.00351 2.62
#> 10 6.15 0.650 37 67 0.00353 2.53
#> # ℹ 100 more rows
#> # ℹ 13 more variables: pval_asym_onesided_high <dbl>, pval_asym_high <dbl>,
#> # auc_low <dbl>, positives_low <int>, negatives_low <int>,
#> # auc_var_H0_low <dbl>, rzAUC_low <dbl>, pval_asym_onesided_low <dbl>,
#> # pval_asym_low <dbl>, tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#>
#> $positive_label
#> [1] "Poor"
#>
#> $pROC_lowpart
#> $pROC_lowpart$`-Inf`
#> NULL
#>
#> $pROC_lowpart$`3.44`
#> NULL
#>
#> $pROC_lowpart$`4.24`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 1 controls (part_df[["true"]] FALSE) < 1 cases (part_df[["true"]] TRUE).
#> Area under the curve: 1
#>
#> $pROC_lowpart$`4.82`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 2 controls (part_df[["true"]] FALSE) < 1 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5
#>
#> $pROC_lowpart$`5.105`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 3 controls (part_df[["true"]] FALSE) < 1 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.3333
#>
#> $pROC_lowpart$`5.185`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 3 controls (part_df[["true"]] FALSE) < 2 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6667
#>
#> $pROC_lowpart$`5.28`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 3 controls (part_df[["true"]] FALSE) < 3 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.7778
#>
#> $pROC_lowpart$`5.685`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 3 controls (part_df[["true"]] FALSE) < 4 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.8333
#>
#> $pROC_lowpart$`6.005`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 4 controls (part_df[["true"]] FALSE) < 4 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.625
#>
#> $pROC_lowpart$`6.15`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 5 controls (part_df[["true"]] FALSE) < 4 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5
#>
#> $pROC_lowpart$`6.295`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 6 controls (part_df[["true"]] FALSE) < 4 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4167
#>
#> $pROC_lowpart$`6.345`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 7 controls (part_df[["true"]] FALSE) < 4 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.3571
#>
#> $pROC_lowpart$`6.465`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 8 controls (part_df[["true"]] FALSE) < 4 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.3125
#>
#> $pROC_lowpart$`6.565`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 9 controls (part_df[["true"]] FALSE) < 4 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.2778
#>
#> $pROC_lowpart$`6.69`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 10 controls (part_df[["true"]] FALSE) < 4 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.25
#>
#> $pROC_lowpart$`6.925`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 11 controls (part_df[["true"]] FALSE) < 4 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.2273
#>
#> $pROC_lowpart$`7.24`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 12 controls (part_df[["true"]] FALSE) < 4 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.2083
#>
#> $pROC_lowpart$`7.525`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 12 controls (part_df[["true"]] FALSE) < 5 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.3667
#>
#> $pROC_lowpart$`7.645`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 13 controls (part_df[["true"]] FALSE) < 5 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.3385
#>
#> $pROC_lowpart$`7.705`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 14 controls (part_df[["true"]] FALSE) < 5 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.3143
#>
#> $pROC_lowpart$`7.855`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 15 controls (part_df[["true"]] FALSE) < 5 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.2933
#>
#> $pROC_lowpart$`7.99`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 16 controls (part_df[["true"]] FALSE) < 5 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.275
#>
#> $pROC_lowpart$`8.055`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 17 controls (part_df[["true"]] FALSE) < 5 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.2588
#>
#> $pROC_lowpart$`8.16`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 18 controls (part_df[["true"]] FALSE) < 5 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.2444
#>
#> $pROC_lowpart$`8.305`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 18 controls (part_df[["true"]] FALSE) < 6 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.3704
#>
#> $pROC_lowpart$`8.455`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 18 controls (part_df[["true"]] FALSE) < 7 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4603
#>
#> $pROC_lowpart$`8.535`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 19 controls (part_df[["true"]] FALSE) < 7 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4361
#>
#> $pROC_lowpart$`8.72`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 20 controls (part_df[["true"]] FALSE) < 7 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4143
#>
#> $pROC_lowpart$`8.955`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 20 controls (part_df[["true"]] FALSE) < 8 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4875
#>
#> $pROC_lowpart$`9.225`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 21 controls (part_df[["true"]] FALSE) < 8 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4643
#>
#> $pROC_lowpart$`9.455`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 23 controls (part_df[["true"]] FALSE) < 8 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4239
#>
#> $pROC_lowpart$`9.52`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 24 controls (part_df[["true"]] FALSE) < 8 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4062
#>
#> $pROC_lowpart$`9.6`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 24 controls (part_df[["true"]] FALSE) < 9 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4722
#>
#> $pROC_lowpart$`9.665`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 25 controls (part_df[["true"]] FALSE) < 10 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.506
#>
#> $pROC_lowpart$`9.75`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 26 controls (part_df[["true"]] FALSE) < 10 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4865
#>
#> $pROC_lowpart$`9.805`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 27 controls (part_df[["true"]] FALSE) < 10 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4685
#>
#> $pROC_lowpart$`9.82`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 28 controls (part_df[["true"]] FALSE) < 10 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4518
#>
#> $pROC_lowpart$`9.84`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 29 controls (part_df[["true"]] FALSE) < 10 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4362
#>
#> $pROC_lowpart$`9.9`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 29 controls (part_df[["true"]] FALSE) < 11 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4875
#>
#> $pROC_lowpart$`10.14`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 30 controls (part_df[["true"]] FALSE) < 11 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4712
#>
#> $pROC_lowpart$`10.365`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 31 controls (part_df[["true"]] FALSE) < 11 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.456
#>
#> $pROC_lowpart$`10.41`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 31 controls (part_df[["true"]] FALSE) < 12 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5013
#>
#> $pROC_lowpart$`10.465`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 32 controls (part_df[["true"]] FALSE) < 12 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4857
#>
#> $pROC_lowpart$`10.53`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 33 controls (part_df[["true"]] FALSE) < 12 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.471
#>
#> $pROC_lowpart$`10.575`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 34 controls (part_df[["true"]] FALSE) < 12 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4571
#>
#> $pROC_lowpart$`10.715`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 35 controls (part_df[["true"]] FALSE) < 12 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.444
#>
#> $pROC_lowpart$`10.95`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 36 controls (part_df[["true"]] FALSE) < 12 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4317
#>
#> $pROC_lowpart$`11.08`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 37 controls (part_df[["true"]] FALSE) < 12 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.42
#>
#> $pROC_lowpart$`11.345`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 37 controls (part_df[["true"]] FALSE) < 13 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4647
#>
#> $pROC_lowpart$`11.635`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 37 controls (part_df[["true"]] FALSE) < 14 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5029
#>
#> $pROC_lowpart$`11.675`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 37 controls (part_df[["true"]] FALSE) < 15 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.536
#>
#> $pROC_lowpart$`11.7`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 38 controls (part_df[["true"]] FALSE) < 15 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5219
#>
#> $pROC_lowpart$`11.725`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 38 controls (part_df[["true"]] FALSE) < 16 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5518
#>
#> $pROC_lowpart$`11.85`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 39 controls (part_df[["true"]] FALSE) < 16 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5377
#>
#> $pROC_lowpart$`12.095`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 40 controls (part_df[["true"]] FALSE) < 16 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5242
#>
#> $pROC_lowpart$`12.375`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 40 controls (part_df[["true"]] FALSE) < 17 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5522
#>
#> $pROC_lowpart$`12.55`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 41 controls (part_df[["true"]] FALSE) < 17 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5387
#>
#> $pROC_lowpart$`12.58`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 42 controls (part_df[["true"]] FALSE) < 17 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5259
#>
#> $pROC_lowpart$`12.63`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 43 controls (part_df[["true"]] FALSE) < 17 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5137
#>
#> $pROC_lowpart$`12.69`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 44 controls (part_df[["true"]] FALSE) < 17 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.502
#>
#> $pROC_lowpart$`12.73`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 45 controls (part_df[["true"]] FALSE) < 17 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4908
#>
#> $pROC_lowpart$`12.775`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 45 controls (part_df[["true"]] FALSE) < 18 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5191
#>
#> $pROC_lowpart$`12.85`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 46 controls (part_df[["true"]] FALSE) < 18 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5079
#>
#> $pROC_lowpart$`12.94`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 47 controls (part_df[["true"]] FALSE) < 19 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.523
#>
#> $pROC_lowpart$`13.05`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 48 controls (part_df[["true"]] FALSE) < 19 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5121
#>
#> $pROC_lowpart$`13.16`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 49 controls (part_df[["true"]] FALSE) < 19 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5016
#>
#> $pROC_lowpart$`13.305`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 49 controls (part_df[["true"]] FALSE) < 20 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5265
#>
#> $pROC_lowpart$`13.43`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 50 controls (part_df[["true"]] FALSE) < 20 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.516
#>
#> $pROC_lowpart$`13.505`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 51 controls (part_df[["true"]] FALSE) < 20 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5059
#>
#> $pROC_lowpart$`13.615`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 51 controls (part_df[["true"]] FALSE) < 21 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5294
#>
#> $pROC_lowpart$`13.77`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 51 controls (part_df[["true"]] FALSE) < 22 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5508
#>
#> $pROC_lowpart$`13.955`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 52 controls (part_df[["true"]] FALSE) < 22 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5402
#>
#> $pROC_lowpart$`14.15`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 52 controls (part_df[["true"]] FALSE) < 23 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5602
#>
#> $pROC_lowpart$`14.3`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 52 controls (part_df[["true"]] FALSE) < 24 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5785
#>
#> $pROC_lowpart$`14.455`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 53 controls (part_df[["true"]] FALSE) < 24 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5676
#>
#> $pROC_lowpart$`15.055`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 54 controls (part_df[["true"]] FALSE) < 24 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5571
#>
#> $pROC_lowpart$`15.715`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 55 controls (part_df[["true"]] FALSE) < 25 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5647
#>
#> $pROC_lowpart$`15.925`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 55 controls (part_df[["true"]] FALSE) < 26 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5815
#>
#> $pROC_lowpart$`16.035`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 55 controls (part_df[["true"]] FALSE) < 27 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.597
#>
#> $pROC_lowpart$`16.66`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 56 controls (part_df[["true"]] FALSE) < 27 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5863
#>
#> $pROC_lowpart$`17.255`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 57 controls (part_df[["true"]] FALSE) < 27 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.576
#>
#> $pROC_lowpart$`17.35`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 58 controls (part_df[["true"]] FALSE) < 27 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5661
#>
#> $pROC_lowpart$`17.63`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 58 controls (part_df[["true"]] FALSE) < 28 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5816
#>
#> $pROC_lowpart$`18.035`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 59 controls (part_df[["true"]] FALSE) < 28 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5717
#>
#> $pROC_lowpart$`18.835`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 60 controls (part_df[["true"]] FALSE) < 28 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5622
#>
#> $pROC_lowpart$`20.105`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 61 controls (part_df[["true"]] FALSE) < 28 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.553
#>
#> $pROC_lowpart$`20.985`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 62 controls (part_df[["true"]] FALSE) < 28 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5441
#>
#> $pROC_lowpart$`21.35`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 62 controls (part_df[["true"]] FALSE) < 29 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5598
#>
#> $pROC_lowpart$`21.525`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 62 controls (part_df[["true"]] FALSE) < 30 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5745
#>
#> $pROC_lowpart$`21.75`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 62 controls (part_df[["true"]] FALSE) < 31 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5882
#>
#> $pROC_lowpart$`22.1`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 62 controls (part_df[["true"]] FALSE) < 32 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6011
#>
#> $pROC_lowpart$`22.35`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 63 controls (part_df[["true"]] FALSE) < 32 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5915
#>
#> $pROC_lowpart$`22.53`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 64 controls (part_df[["true"]] FALSE) < 32 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5823
#>
#> $pROC_lowpart$`23.605`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 64 controls (part_df[["true"]] FALSE) < 33 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5949
#>
#> $pROC_lowpart$`25.885`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 65 controls (part_df[["true"]] FALSE) < 33 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5858
#>
#> $pROC_lowpart$`27.84`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 66 controls (part_df[["true"]] FALSE) < 33 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5769
#>
#> $pROC_lowpart$`30.43`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 67 controls (part_df[["true"]] FALSE) < 33 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5683
#>
#> $pROC_lowpart$`32.39`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 67 controls (part_df[["true"]] FALSE) < 34 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.581
#>
#> $pROC_lowpart$`33.235`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 67 controls (part_df[["true"]] FALSE) < 35 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.593
#>
#> $pROC_lowpart$`37.2`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 67 controls (part_df[["true"]] FALSE) < 36 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6043
#>
#> $pROC_lowpart$`40.885`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 67 controls (part_df[["true"]] FALSE) < 37 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.615
#>
#> $pROC_lowpart$`44.13`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 68 controls (part_df[["true"]] FALSE) < 37 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6059
#>
#> $pROC_lowpart$`47.22`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 69 controls (part_df[["true"]] FALSE) < 37 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5971
#>
#> $pROC_lowpart$`48.775`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 69 controls (part_df[["true"]] FALSE) < 38 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6077
#>
#> $pROC_lowpart$`52.38`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 70 controls (part_df[["true"]] FALSE) < 38 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5991
#>
#> $pROC_lowpart$`56.825`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 70 controls (part_df[["true"]] FALSE) < 39 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6093
#>
#> $pROC_lowpart$`65.7`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 71 controls (part_df[["true"]] FALSE) < 39 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6008
#>
#> $pROC_lowpart$`76.435`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 71 controls (part_df[["true"]] FALSE) < 40 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6107
#>
#> $pROC_lowpart$`249.745`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 72 controls (part_df[["true"]] FALSE) < 40 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6023
#>
#> $pROC_lowpart$`Inf`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 72 controls (part_df[["true"]] FALSE) < 41 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.612
#>
#>
#> $pROC_highpart
#> $pROC_highpart$`-Inf`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 72 controls (part_df[["true"]] FALSE) < 41 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.612
#>
#> $pROC_highpart$`3.44`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 71 controls (part_df[["true"]] FALSE) < 41 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6065
#>
#> $pROC_highpart$`4.24`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 71 controls (part_df[["true"]] FALSE) < 40 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6217
#>
#> $pROC_highpart$`4.82`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 70 controls (part_df[["true"]] FALSE) < 40 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6162
#>
#> $pROC_highpart$`5.105`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 69 controls (part_df[["true"]] FALSE) < 40 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6107
#>
#> $pROC_highpart$`5.185`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 69 controls (part_df[["true"]] FALSE) < 39 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6263
#>
#> $pROC_highpart$`5.28`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 69 controls (part_df[["true"]] FALSE) < 38 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6428
#>
#> $pROC_highpart$`5.685`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 69 controls (part_df[["true"]] FALSE) < 37 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6602
#>
#> $pROC_highpart$`6.005`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 68 controls (part_df[["true"]] FALSE) < 37 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6552
#>
#> $pROC_highpart$`6.15`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 67 controls (part_df[["true"]] FALSE) < 37 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6501
#>
#> $pROC_highpart$`6.295`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 66 controls (part_df[["true"]] FALSE) < 37 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6448
#>
#> $pROC_highpart$`6.345`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 65 controls (part_df[["true"]] FALSE) < 37 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6393
#>
#> $pROC_highpart$`6.465`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 64 controls (part_df[["true"]] FALSE) < 37 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6337
#>
#> $pROC_highpart$`6.565`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 63 controls (part_df[["true"]] FALSE) < 37 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6278
#>
#> $pROC_highpart$`6.69`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 62 controls (part_df[["true"]] FALSE) < 37 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6218
#>
#> $pROC_highpart$`6.925`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 61 controls (part_df[["true"]] FALSE) < 37 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6156
#>
#> $pROC_highpart$`7.24`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 60 controls (part_df[["true"]] FALSE) < 37 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6092
#>
#> $pROC_highpart$`7.525`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 60 controls (part_df[["true"]] FALSE) < 36 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6262
#>
#> $pROC_highpart$`7.645`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 59 controls (part_df[["true"]] FALSE) < 36 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6198
#>
#> $pROC_highpart$`7.705`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 58 controls (part_df[["true"]] FALSE) < 36 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6133
#>
#> $pROC_highpart$`7.855`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 57 controls (part_df[["true"]] FALSE) < 36 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6065
#>
#> $pROC_highpart$`7.99`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 56 controls (part_df[["true"]] FALSE) < 36 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5995
#>
#> $pROC_highpart$`8.055`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 55 controls (part_df[["true"]] FALSE) < 36 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5922
#>
#> $pROC_highpart$`8.16`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 54 controls (part_df[["true"]] FALSE) < 36 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5846
#>
#> $pROC_highpart$`8.305`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 54 controls (part_df[["true"]] FALSE) < 35 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6013
#>
#> $pROC_highpart$`8.455`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 54 controls (part_df[["true"]] FALSE) < 34 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.619
#>
#> $pROC_highpart$`8.535`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 53 controls (part_df[["true"]] FALSE) < 34 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6118
#>
#> $pROC_highpart$`8.72`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 52 controls (part_df[["true"]] FALSE) < 34 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6044
#>
#> $pROC_highpart$`8.955`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 52 controls (part_df[["true"]] FALSE) < 33 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6227
#>
#> $pROC_highpart$`9.225`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 51 controls (part_df[["true"]] FALSE) < 33 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6153
#>
#> $pROC_highpart$`9.455`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 49 controls (part_df[["true"]] FALSE) < 33 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5996
#>
#> $pROC_highpart$`9.52`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 48 controls (part_df[["true"]] FALSE) < 33 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5912
#>
#> $pROC_highpart$`9.6`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 48 controls (part_df[["true"]] FALSE) < 32 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6097
#>
#> $pROC_highpart$`9.665`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 47 controls (part_df[["true"]] FALSE) < 31 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6211
#>
#> $pROC_highpart$`9.75`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 46 controls (part_df[["true"]] FALSE) < 31 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6129
#>
#> $pROC_highpart$`9.805`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 45 controls (part_df[["true"]] FALSE) < 31 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6043
#>
#> $pROC_highpart$`9.82`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 44 controls (part_df[["true"]] FALSE) < 31 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5953
#>
#> $pROC_highpart$`9.84`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 43 controls (part_df[["true"]] FALSE) < 31 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5859
#>
#> $pROC_highpart$`9.9`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 43 controls (part_df[["true"]] FALSE) < 30 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6054
#>
#> $pROC_highpart$`10.14`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 42 controls (part_df[["true"]] FALSE) < 30 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.596
#>
#> $pROC_highpart$`10.365`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 41 controls (part_df[["true"]] FALSE) < 30 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5862
#>
#> $pROC_highpart$`10.41`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 41 controls (part_df[["true"]] FALSE) < 29 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6064
#>
#> $pROC_highpart$`10.465`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 40 controls (part_df[["true"]] FALSE) < 29 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5966
#>
#> $pROC_highpart$`10.53`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 39 controls (part_df[["true"]] FALSE) < 29 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5862
#>
#> $pROC_highpart$`10.575`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 38 controls (part_df[["true"]] FALSE) < 29 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5753
#>
#> $pROC_highpart$`10.715`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 37 controls (part_df[["true"]] FALSE) < 29 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5638
#>
#> $pROC_highpart$`10.95`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 36 controls (part_df[["true"]] FALSE) < 29 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5517
#>
#> $pROC_highpart$`11.08`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 35 controls (part_df[["true"]] FALSE) < 29 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5389
#>
#> $pROC_highpart$`11.345`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 35 controls (part_df[["true"]] FALSE) < 28 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5582
#>
#> $pROC_highpart$`11.635`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 35 controls (part_df[["true"]] FALSE) < 27 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5788
#>
#> $pROC_highpart$`11.675`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 35 controls (part_df[["true"]] FALSE) < 26 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6011
#>
#> $pROC_highpart$`11.7`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 34 controls (part_df[["true"]] FALSE) < 26 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5894
#>
#> $pROC_highpart$`11.725`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 34 controls (part_df[["true"]] FALSE) < 25 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6129
#>
#> $pROC_highpart$`11.85`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 33 controls (part_df[["true"]] FALSE) < 25 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6012
#>
#> $pROC_highpart$`12.095`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 32 controls (part_df[["true"]] FALSE) < 25 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5888
#>
#> $pROC_highpart$`12.375`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 32 controls (part_df[["true"]] FALSE) < 24 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6133
#>
#> $pROC_highpart$`12.55`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 31 controls (part_df[["true"]] FALSE) < 24 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6008
#>
#> $pROC_highpart$`12.58`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 30 controls (part_df[["true"]] FALSE) < 24 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5875
#>
#> $pROC_highpart$`12.63`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 29 controls (part_df[["true"]] FALSE) < 24 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5733
#>
#> $pROC_highpart$`12.69`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 28 controls (part_df[["true"]] FALSE) < 24 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.558
#>
#> $pROC_highpart$`12.73`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 27 controls (part_df[["true"]] FALSE) < 24 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5417
#>
#> $pROC_highpart$`12.775`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 27 controls (part_df[["true"]] FALSE) < 23 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5652
#>
#> $pROC_highpart$`12.85`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 26 controls (part_df[["true"]] FALSE) < 23 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5485
#>
#> $pROC_highpart$`12.94`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 25 controls (part_df[["true"]] FALSE) < 22 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5555
#>
#> $pROC_highpart$`13.05`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 24 controls (part_df[["true"]] FALSE) < 22 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5369
#>
#> $pROC_highpart$`13.16`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 23 controls (part_df[["true"]] FALSE) < 22 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5168
#>
#> $pROC_highpart$`13.305`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 23 controls (part_df[["true"]] FALSE) < 21 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5414
#>
#> $pROC_highpart$`13.43`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 22 controls (part_df[["true"]] FALSE) < 21 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5206
#>
#> $pROC_highpart$`13.505`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 21 controls (part_df[["true"]] FALSE) < 21 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4977
#>
#> $pROC_highpart$`13.615`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 21 controls (part_df[["true"]] FALSE) < 20 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5226
#>
#> $pROC_highpart$`13.77`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 21 controls (part_df[["true"]] FALSE) < 19 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5501
#>
#> $pROC_highpart$`13.955`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 20 controls (part_df[["true"]] FALSE) < 19 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5276
#>
#> $pROC_highpart$`14.15`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 20 controls (part_df[["true"]] FALSE) < 18 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5569
#>
#> $pROC_highpart$`14.3`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 20 controls (part_df[["true"]] FALSE) < 17 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5897
#>
#> $pROC_highpart$`14.455`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 19 controls (part_df[["true"]] FALSE) < 17 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5681
#>
#> $pROC_highpart$`15.055`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 18 controls (part_df[["true"]] FALSE) < 17 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5441
#>
#> $pROC_highpart$`15.715`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 17 controls (part_df[["true"]] FALSE) < 16 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5515
#>
#> $pROC_highpart$`15.925`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 17 controls (part_df[["true"]] FALSE) < 15 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5882
#>
#> $pROC_highpart$`16.035`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 17 controls (part_df[["true"]] FALSE) < 14 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6303
#>
#> $pROC_highpart$`16.66`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 16 controls (part_df[["true"]] FALSE) < 14 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6071
#>
#> $pROC_highpart$`17.255`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 15 controls (part_df[["true"]] FALSE) < 14 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.581
#>
#> $pROC_highpart$`17.35`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 14 controls (part_df[["true"]] FALSE) < 14 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.551
#>
#> $pROC_highpart$`17.63`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 14 controls (part_df[["true"]] FALSE) < 13 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5934
#>
#> $pROC_highpart$`18.035`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 13 controls (part_df[["true"]] FALSE) < 13 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5621
#>
#> $pROC_highpart$`18.835`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 12 controls (part_df[["true"]] FALSE) < 13 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5256
#>
#> $pROC_highpart$`20.105`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 11 controls (part_df[["true"]] FALSE) < 13 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4825
#>
#> $pROC_highpart$`20.985`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 10 controls (part_df[["true"]] FALSE) < 13 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4308
#>
#> $pROC_highpart$`21.35`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 10 controls (part_df[["true"]] FALSE) < 12 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4667
#>
#> $pROC_highpart$`21.525`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 10 controls (part_df[["true"]] FALSE) < 11 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5091
#>
#> $pROC_highpart$`21.75`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 10 controls (part_df[["true"]] FALSE) < 10 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.56
#>
#> $pROC_highpart$`22.1`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 10 controls (part_df[["true"]] FALSE) < 9 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6222
#>
#> $pROC_highpart$`22.35`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 9 controls (part_df[["true"]] FALSE) < 9 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5802
#>
#> $pROC_highpart$`22.53`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 8 controls (part_df[["true"]] FALSE) < 9 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5278
#>
#> $pROC_highpart$`23.605`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 8 controls (part_df[["true"]] FALSE) < 8 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5938
#>
#> $pROC_highpart$`25.885`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 7 controls (part_df[["true"]] FALSE) < 8 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5357
#>
#> $pROC_highpart$`27.84`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 6 controls (part_df[["true"]] FALSE) < 8 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4583
#>
#> $pROC_highpart$`30.43`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 5 controls (part_df[["true"]] FALSE) < 8 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.35
#>
#> $pROC_highpart$`32.39`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 5 controls (part_df[["true"]] FALSE) < 7 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4
#>
#> $pROC_highpart$`33.235`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 5 controls (part_df[["true"]] FALSE) < 6 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.4667
#>
#> $pROC_highpart$`37.2`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 5 controls (part_df[["true"]] FALSE) < 5 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.56
#>
#> $pROC_highpart$`40.885`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 5 controls (part_df[["true"]] FALSE) < 4 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.7
#>
#> $pROC_highpart$`44.13`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 4 controls (part_df[["true"]] FALSE) < 4 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.625
#>
#> $pROC_highpart$`47.22`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 3 controls (part_df[["true"]] FALSE) < 4 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5
#>
#> $pROC_highpart$`48.775`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 3 controls (part_df[["true"]] FALSE) < 3 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.6667
#>
#> $pROC_highpart$`52.38`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 2 controls (part_df[["true"]] FALSE) < 3 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5
#>
#> $pROC_highpart$`56.825`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 2 controls (part_df[["true"]] FALSE) < 2 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.75
#>
#> $pROC_highpart$`65.7`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 1 controls (part_df[["true"]] FALSE) < 2 cases (part_df[["true"]] TRUE).
#> Area under the curve: 0.5
#>
#> $pROC_highpart$`76.435`
#>
#> Call:
#> roc.default(response = part_df[["true"]], predictor = part_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: part_df[["pred"]] in 1 controls (part_df[["true"]] FALSE) < 1 cases (part_df[["true"]] TRUE).
#> Area under the curve: 1
#>
#> $pROC_highpart$`249.745`
#> NULL
#>
#> $pROC_highpart$`Inf`
#> NULL
#>
#>
#> $pROC_full
#>
#> Call:
#> roc.default(response = true_pred_df[["true"]], predictor = true_pred_df[["pred"]], levels = c(FALSE, TRUE), direction = direction)
#>
#> Data: true_pred_df[["pred"]] in 72 controls (true_pred_df[["true"]] FALSE) < 41 cases (true_pred_df[["true"]] TRUE).
#> Area under the curve: 0.612
#>
#> attr(,"class")
#> [1] "simple_rROC" "list"
simple_rROC(
response = aSAH$outcome,
predictor = aSAH$ndka,
check_positive_negative_count = TRUE
)
#> Positive label not given, setting to last level of factor: Poor
#> $joined_aucs
#> # A tibble: 110 × 21
#> threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -Inf 0.612 41 72 1 0.00322
#> 2 3.44 0.606 41 71 1.01 0.00323
#> 3 4.24 0.622 40 71 1.04 0.00329
#> 4 4.82 0.616 40 70 1.05 0.00330
#> 5 5.11 0.611 40 69 1.07 0.00332
#> 6 5.18 0.626 39 69 1.10 0.00338
#> 7 5.28 0.643 38 69 1.13 0.00343
#> 8 5.68 0.660 37 69 1.16 0.00349
#> 9 6.00 0.655 37 68 1.17 0.00351
#> 10 6.15 0.650 37 67 1.19 0.00353
#> # ℹ 100 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> # pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> # negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> # rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> # tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#>
#> $positive_label
#> [1] "Poor"
#>
#> attr(,"class")
#> [1] "simple_rROC" "list"
simple_rROC(
response = aSAH$outcome,
predictor = aSAH$ndka,
do_parallel = TRUE
)
#> Positive label not given, setting to last level of factor: Poor
#> $joined_aucs
#> # A tibble: 110 × 21
#> threshold auc_high positives_high negatives_high scaling_high auc_var_H0_high
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -Inf 0.612 41 72 1 0.00322
#> 2 3.44 0.606 41 71 1.01 0.00323
#> 3 4.24 0.622 40 71 1.04 0.00329
#> 4 4.82 0.616 40 70 1.05 0.00330
#> 5 5.11 0.611 40 69 1.07 0.00332
#> 6 5.18 0.626 39 69 1.10 0.00338
#> 7 5.28 0.643 38 69 1.13 0.00343
#> 8 5.68 0.660 37 69 1.16 0.00349
#> 9 6.00 0.655 37 68 1.17 0.00351
#> 10 6.15 0.650 37 67 1.19 0.00353
#> # ℹ 100 more rows
#> # ℹ 15 more variables: rzAUC_high <dbl>, pval_asym_onesided_high <dbl>,
#> # pval_asym_high <dbl>, auc_low <dbl>, positives_low <dbl>,
#> # negatives_low <dbl>, scaling_low <dbl>, auc_var_H0_low <dbl>,
#> # rzAUC_low <dbl>, pval_asym_onesided_low <dbl>, pval_asym_low <dbl>,
#> # tp <dbl>, fp <dbl>, tpr_global <dbl>, fpr_global <dbl>
#>
#> $positive_label
#> [1] "Poor"
#>
#> attr(,"class")
#> [1] "simple_rROC" "list"
if (FALSE) { # \dontrun{
simple_rROC(
response = aSAH$outcome,
predictor = aSAH$ndka,
get_all_aucs_fun = restrictedROC:::get_all_aucs,
do_parallel = TRUE
)
} # }