Simulate values from distributions
sim.Rd
Simulate values from distributions
Arguments
- ...
Every argument must be a function which takes the number of values which should be generated, e.g.:
- length.out
How many samples should be drawn from each population
- do_melt
TRUE: # A tibble: 200 × 2 Distribution Value
1 negative 0.805 2 positive 2.62 3 negative 1.19 4 positive 1.49 FALSE: # A tibble: 100 × 2 negative positive
1 0.631 2.81 2 0.687 1.87 3 0.0347 1.61 4 -1.15 0.529
Examples
sim(
negative = function(x) rnorm(x, mean = 0, sd = 1),
positive = function(x) rnorm(x, mean = 1, sd = 1)
)
#> # A tibble: 200 × 2
#> Value Distribution
#> <dbl> <chr>
#> 1 0.386 negative
#> 2 -0.839 negative
#> 3 -0.530 negative
#> 4 -2.29 negative
#> 5 1.86 negative
#> 6 -0.625 negative
#> 7 0.176 negative
#> 8 -1.37 negative
#> 9 -1.35 negative
#> 10 0.947 negative
#> # ℹ 190 more rows
sim(
list(
negative = function(x) rnorm(x, mean = 0, sd = 1),
positive = function(x) rnorm(x, mean = 1, sd = 1)
)
)
#> # A tibble: 200 × 2
#> Value Distribution
#> <dbl> <chr>
#> 1 1.07 negative
#> 2 0.655 negative
#> 3 -0.123 negative
#> 4 -0.930 negative
#> 5 1.52 negative
#> 6 -0.0768 negative
#> 7 -0.370 negative
#> 8 0.606 negative
#> 9 1.53 negative
#> 10 -0.0815 negative
#> # ℹ 190 more rows
sim(
negative = function(x) rnorm(x, mean = 0, sd = 1),
positive = function(x) rnorm(x, mean = 1, sd = 1),
do_melt = FALSE
)
#> # A tibble: 100 × 2
#> negative positive
#> <dbl> <dbl>
#> 1 0.605 2.12
#> 2 0.801 1.40
#> 3 0.318 0.0155
#> 4 0.103 0.497
#> 5 -0.658 1.99
#> 6 0.0339 3.19
#> 7 -0.650 0.835
#> 8 0.911 0.314
#> 9 -0.0473 1.94
#> 10 -1.18 0.836
#> # ℹ 90 more rows
sim(
negative = function(x) rnorm(x, mean = 0, sd = 1),
positive = function(x) rnorm(x, mean = 1, sd = 1),
do_melt = TRUE
)
#> # A tibble: 200 × 2
#> Value Distribution
#> <dbl> <chr>
#> 1 -1.39 negative
#> 2 0.437 negative
#> 3 0.316 negative
#> 4 0.195 negative
#> 5 -0.456 negative
#> 6 0.813 negative
#> 7 0.275 negative
#> 8 0.00601 negative
#> 9 2.01 negative
#> 10 0.314 negative
#> # ℹ 190 more rows
sim(
negative = function(x) rnorm(x, mean = 0, sd = 1),
positive = function(x) rnorm(x, mean = 1, sd = 1),
length.out = 10
)
#> # A tibble: 20 × 2
#> Value Distribution
#> <dbl> <chr>
#> 1 0.0491 negative
#> 2 -0.0328 negative
#> 3 -0.511 negative
#> 4 0.356 negative
#> 5 0.418 negative
#> 6 0.579 negative
#> 7 -1.48 negative
#> 8 1.32 negative
#> 9 1.03 negative
#> 10 0.317 negative
#> 11 -0.112 positive
#> 12 1.62 positive
#> 13 2.81 positive
#> 14 2.11 positive
#> 15 1.47 positive
#> 16 -0.0686 positive
#> 17 1.26 positive
#> 18 0.223 positive
#> 19 0.0497 positive
#> 20 2.23 positive