Performance of ROC curves
perf_ROC.Rd
Performance of ROC curves
Arguments
- response
A vector containing the true class labels. Care that it is VERY important which class is the positive class because the predictions are ordered according to
restriction
- predictor
A vector containing the predictions.
- how
Previously, I allowed "pROC" and "ROCR", but now I only allow "pROC" after it is way faster.
- positive_label
Label of the positive class
- ...
Further arguments to
perf_pROC()
Value
List of
perf: Result of perf_pROC()
, comes from pROC::coords()
auc: Area under the ROC curve, comes from pROC::auc()
positive_label: Label of the positive class
auc_variance: Variance of the AUC under Nullhypothesis:
$$\frac{n_{positives} + n_{negatives} + 1}{12\cdot n_{positives} \cdot n_{negatives}}$$
rzAUC: restricted standardized AUC, combines the calculated AUC with the variance.
Looks then e.g. like:
$perf
# A tibble: 110 × 5
tp fp tpr fpr threshold
<dbl> <dbl> <dbl> <dbl> <dbl>
1 41 72 1 1 -Inf
2 41 71 1 0.986 3.44
3 40 71 0.976 0.986 4.24
4 40 70 0.976 0.972 4.82
5 40 69 0.976 0.958 5.11
6 39 69 0.951 0.958 5.18
7 38 69 0.927 0.958 5.28
8 37 69 0.902 0.958 5.68
9 37 68 0.902 0.944 6.00
10 37 67 0.902 0.931 6.15
# … with 100 more rows
# ℹ Use `print(n = ...)` to see more rows
$auc
[1] 0.611958
$positive_label
[1] "Poor"
$auc_variance
[1] 0.003218157
$rzAUC
[1] 1.973565
Examples
data(aSAH, package = "pROC")
if (FALSE) { # \dontrun{
# ROCR is not implemented anymore
perf_ROC(
response = aSAH$outcome,
predictor = aSAH$ndka,
how = "ROCR"
)
} # }
perf_ROC(
response = aSAH$outcome,
predictor = aSAH$ndka,
how = "pROC"
)
#> Setting levels: control = Good, case = Poor
#> Setting direction: controls < cases
#> $perf
#> # A tibble: 110 × 5
#> tp fp tpr fpr threshold
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 41 72 1 1 -Inf
#> 2 41 71 1 0.986 3.44
#> 3 40 71 0.976 0.986 4.24
#> 4 40 70 0.976 0.972 4.82
#> 5 40 69 0.976 0.958 5.11
#> 6 39 69 0.951 0.958 5.18
#> 7 38 69 0.927 0.958 5.28
#> 8 37 69 0.902 0.958 5.68
#> 9 37 68 0.902 0.944 6.00
#> 10 37 67 0.902 0.931 6.15
#> # ℹ 100 more rows
#>
#> $auc
#> [1] 0.611958
#>
#> $positive_label
#> [1] "Poor"
#>
#> $auc_variance
#> [1] 0.003218157
#>
#> $rzAUC
#> [1] 1.973565
#>
perf_ROC(
response = aSAH$outcome,
predictor = aSAH$ndka
)
#> Setting levels: control = Good, case = Poor
#> Setting direction: controls < cases
#> $perf
#> # A tibble: 110 × 5
#> tp fp tpr fpr threshold
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 41 72 1 1 -Inf
#> 2 41 71 1 0.986 3.44
#> 3 40 71 0.976 0.986 4.24
#> 4 40 70 0.976 0.972 4.82
#> 5 40 69 0.976 0.958 5.11
#> 6 39 69 0.951 0.958 5.18
#> 7 38 69 0.927 0.958 5.28
#> 8 37 69 0.902 0.958 5.68
#> 9 37 68 0.902 0.944 6.00
#> 10 37 67 0.902 0.931 6.15
#> # ℹ 100 more rows
#>
#> $auc
#> [1] 0.611958
#>
#> $positive_label
#> [1] "Poor"
#>
#> $auc_variance
#> [1] 0.003218157
#>
#> $rzAUC
#> [1] 1.973565
#>
a <- perf_ROC(
response = aSAH$outcome,
predictor = aSAH$ndka
)
#> Setting levels: control = Good, case = Poor
#> Setting direction: controls < cases