Plot (restricted) ROC curves
plot_rROC_part.RdPlot for every tpr/fpr combination:
- Full density 
- Full ROC + selection rectangles (orange + blue) + Full AUC + orange+blue partial AUCs + scaling factor + name rectangle sides + orange+blue partial AUCs SCALED 
- ROCs for selections + Full AUCs + Color rectangle around the plot 
- Densities for selections 
Usage
plot_rROC_part(
  x,
  p_full_density_ROC = NA,
  threshold = NA,
  fpr = NA,
  color_high = default_part_colors["high"],
  color_low = default_part_colors["low"],
  include_part_auc_text = FALSE
)Arguments
- x
- rROC result including full_pROC. 
- p_full_density_ROC
- Density plot from plot_density_ROC_empirical of the full data, if not given it is calculated from rROC_res 
- threshold
- At which threshold should be split into high and low. Alternatively, give a false positive rate (fpr) 
- fpr
- A false positive rate at which (approximately) the cutoff will be made 
- color_high
- Color for high part 
- color_low
- Color for low part 
- include_part_auc_text
- Should the text-annotations be added or not? 
Examples
library(restrictedROC)
data(aSAH, package = "pROC")
ret_procs <- simple_rROC(
    response = aSAH$outcome,
    predictor = aSAH$ndka,
    return_proc = TRUE
)
#> Positive label not given, setting to last level of factor: Poor
# pdf("removeme.pdf")
print(plot_rROC_part(ret_procs, fpr = .5))
#> $plotlist
#> $plotlist$A
 #> 
#> $plotlist$B
#> 
#> $plotlist$B
 #> 
#> $plotlist$C
#> 
#> $plotlist$C
 #> 
#> $plotlist$D
#> 
#> $plotlist$D
 #> 
#> $plotlist$E
#> 
#> $plotlist$E
 #> 
#> $plotlist$F
#> 
#> $plotlist$F
 #> 
#> 
#> $patchworked
#> 
#> 
#> $patchworked
 #> 
# dev.off()
#> 
# dev.off()