Skip to contents

Given positive and negative distributions, plot the corresponding densities and their ROC-curves.

Usage

plot_density_ROC_empirical(
  values_grouped,
  length.out = 500,
  xmin = -3,
  xmax = 3,
  ...
)

Arguments

values_grouped

List-like element. (also data.frames or matrices) where the elements are the samples from the different distributions. E.g.: # A tibble: 1,000 × 2 dist_1 dist_2 1 0.974 0.257 2 0.196 -0.780 3 -0.125 -0.264 4 0.701 0.260

length.out

See plot_density_empirical(). Granularity of density plot (pure visualization).

xmin

See plot_density_empirical().

xmax

See plot_density_empirical().

...

Further arguments to perf_ROC()

Value

patchwork'ed ggplots: left density, right ROC curve.

Examples


sim_samples <- sim(
    list(
        "dist_1" = function(x) rnorm(x, mean = 1, sd = 1),
        "dist_2" = function(x) rnorm(x, mean = 0, sd = 1)
    ),
    do_melt = FALSE,
    length.out = 1000
)
plot_density_ROC_empirical(sim_samples)
#> Setting levels: control = dist_1, case = dist_2
#> Setting direction: controls > cases